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ABSTRACT

Background: Next generation sequencing (NGS) is an emerging technique in
clinical microbiology with applications ranging from outbreak analysis to genomic
surveillance to analysis of unusual pathogens. Often NGS analysis is a fragmented
step-wise process or pipelines are specialized for a single application or species.
Herein we describe the URMC clinical microbiology pipeline (pipeline), a robust,
quality-controlled, modular process for diverse applications and pathogens.

Methods:The pipeline was designed to flexibly perform rapid analysis on a variety
of datasets and questions while storing previously analyzed isolates allowing the
user to build a local database of isolates discovered in their area. The pipeline
consists of two steps written in Python, SQLiite3, and JavaScript. The first step
performs quality control on the raw reads (trimmomatic, FastQC) followed by
genome assembly (SPAdes) and plasmid assembly (PlasmidSPAdes). Quality of
genome assembly is assessed (Quast), genus and species (strainseeker), and
MLST of samples are identified. Common phenotyping blast databases are
included in the pipeline but custom blast databases can be added making the
pipeline relevant to any species or project. To rapidly identify the best species
reference the genome coverage is calculated for every sample (Quast). Step two
consists of a modified CFSAN SNP Pipeline for reference-based SNP Calling and
Phylogenetic Analysis. Modifications include masking SNPs which occur inside
phages, mobile elements, and transposons, only include sites where a consensus
exists in every sample, to produce a maximum likelihood tree (FastTree), and an
interactive web application is produced to visualize the coverage and SNP locations
throughout the genome to ensure consistent coverage and no SNP clustering.

Results: The pipeline was successfully used for the following diverse projects;
Genomic investigation of an Enterobacter aerogenes outbreak in a cardiac
intensive care unit. Genomic surveillance of carbapenem-resistant pathogens, and
Extended spectrum [-lactamases E.coli. We have also used the pipeline for
characterizing unusually isolated organisms e.g. Facklamina hominis.

Conclusions: Whole genome sequencing is a powerful tool to complement
traditional clinical microbiology techniques. Here, we described a pipeline that has
been proven in diverse projects to be a versatile for clinical microbiology needs.
Future plans include automatically generating an editable phylogenetic tree that
overlays meta-data onto and adding a cloud-based user interface for initializing the
pipeline, analyzing the data, and producing a standardized report to provide to
clinical staff.

INTRODUCTION

* Growing need for NGS analysis in clinical microbiology
laboratories for diverse projects and questions.

Fig 1. Diverse projects and questions answered by NGS
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* Develop a clinical microbiology pipeline which pieces
together fragmented processes into one robust,
quality-controlled, modular process for diverse applications
and pathogens.

* Create a local genomic landscape.

Medical Center, Rochester NY

METHODS

« Data Type: lllumina MiSeq paired end reads.

« Languages/Database: Python, SQLite, JavaSc

high performance cluster.

* Only key intermediate datasets and results are
space to a minimum

« Examples of user conditions includes choosing
modules not to run and changing QC cutoffs.

ript.

« Run Environment: Linux command line interface on a Slurm

 To decrease processing time, tasks are either run in parallel
or as a different Slurm jobs depending the needs of the task.

stored to

decrease re-analysis time while keeping required hard drive

what

Fig 2. URMC clinical microbiology pipeline diagram.

EXAMPLE OF OUTBREAK ANALYSIS CONT.

Fig 4. Population structure of Enterobacter aerogenes: local vs
global strains.
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EXAMPLE OF OUTBREAK ANALYSIS

* An carbapenem-resistant Enterobacter aerogen

Intensive care unit. (CICU)

virulence.

Fig 3. CICU E. Aerogenes Outbreak timeline.

es outbreak

occurred from Jun-Nov 2017 occurred in our cardiac

* Whole genome sequencing of CR-EA isolates was
undertaken to investigate patient-to-patient transmission,
assess phylogeny relative to separate hospital isolates, and
characterize molecular determinants of resistance and
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- Outbreak was a single clonal cluster

« Qutbreak was distinct from strains from other wards and
previous years

EXAMPLE OF SURVEILLANCE PROJECT

« Widespread increase in extended spectrum [-lactamases is
a global threat.

 Historically, E. coli ST-131 with blaCTX-M-15 has been the
majority of ESBL-producing E. coli both in the United States
and worldwide.

 In our institution, the total number of ESBL-producing E. coli
iIncreased between 2013 to 2017 (30%), and were primarily
uropathogenic isolates.

Fig 5. Population structure of isolates in study ST131 is
the predominate subclone, followed by ST38
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EXAMPLE OF SURVEILLANCE PROJECT CONT

dominate ESBL within ST38
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and ST-38.

Fig 6. CTX-M-27 is nearly as prevalent as CTX-M-15 and is the

« Western New York genomic surveillance found that
blaCTX-M-27 may be an emerging ESBL in both ST-131
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CONCLUSIONS AND FUTURE DIRECTIONS

Future Directions

overlays meta-data.

provide to clinical staff.

- Whole genome sequencing and the URMC micropipeline have
been a powerful tool for tracking transmission events, tracking
effectiveness of control measures in real-time, surveillance
purposes, and atypical cases.

- The URMC micropipeline can robustly analyze diverse projects
and produce reproducible results.

« Automatically generating an editable phylogenetic tree that

- Adding a cloud-based user interface for initializing the pipeline,
analyzing the data, and producing a standardized report to
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